USE OF CERTAIN TYPE OF MULTI-AUXILIARY INFORMATION FOR INCREASING THE EFFICIENCY OF CLUSTER SAMPLING WITH RATIO AND REGRESSION ESTIMATORS

By S. K. AGARWAL¹ AND B.B.P.S GOEL² (Received: May, 1978)

1. Introduction

Cluster sampling is often used in sample surveys for its well known advantages. However, cluster sampling is less efficient than simple random sampling (s. r. s.) for a given sample size, whenever intra-class correlation coefficient for the character under study is positive and which is almost always so in actual practice.

Zarkovich and Krane [5] have shown that the correlation between the cluster means of two characters increases as the cluster size increases. Mishro and Sukhatme [3] utilized these findings and gave the conditions under which cluster sampling in conjunction with ratio/regression estimators is more efficient than s. r. s. in conjunction with the corresponding estimators even if the intra-class correlation coefficient is positive.

It is shown in this paper that using multi-auxiliary information this efficiency can be increased further.

Mishro and Sukhatme [3] showed that cluster sampling with regression and ratio estimators is more efficient than s.r.s. with corresponding estimators even if the intra-class correlation coefficient for the variable under study is positive provided

$$\rho_b^2 > \rho^2 + \frac{(M-1)\rho'(1-\rho^2)}{1+(M-1)\rho'}$$
 ...(1.1)

^{1.} University of Jodhpur, Jodhpur-342 001

^{2.} I.A.S.R.I., New Delhi-110 012

for regression method of estimation and

$$\rho_b > \rho + \frac{(M-1) \rho' (1-\rho)}{1+(M-1) \rho'}$$
 ...(1.2)

for ratio method of estimation. where,

Ph is the correlation coefficient between cluster means of the character under study (y) and auxiliary character (x) for clusters of size M.

 ρ is the correlation coefficient between γ and xo' is the intra-class correlation for character v

The efficiencies E_1 and E_2 of cluster sampling with regression and ratio estimators relative to that of s. r.s. with the corresponding estimators, for a fixed cost, are given by

$$E_1 = \frac{1 - \rho^2}{(1 - \rho_b^2) (1 + \overline{M - 1} \, \rho')} \times \frac{n^*}{n} \qquad \dots (1.3)$$

and

$$E_2 = \frac{1 - \rho}{(1 - \rho_b) \{1 + (M - 1)\rho'\}} \times \frac{n^*}{n} \qquad \dots (1.4)$$

respectively, where the fixed cost (say C_0) permits a s. r. s. of nMelements or a s. r. s. of n^* ($n^* > n$) clusters of size M.

2. CONSTRUCTION OF INDICES

Agarwal [1] gave several methods for constructing indices of sizes of units of a population as linear functions of p-auxiliary variates whenever such information is available for all units of a population. Let x_1, x_2, \dots, x_p be p-auxiliary variates. Consider the Index I given by

$$I=a'X$$
 ...(2.1)

where

$$\underline{X'}=(x_1, x_2,\ldots, x_p)$$

and

$$\underline{X'} = (x_1, x_2, \dots, x_p)$$

 $\underline{a'} = (a_1, a_2, \dots, a_p)$

a, is chosen such that

- (i) I has a correlation with y higher than the correlation which any of the x's has with it.
- (ii) The regression hyper plane given by (2.1) is nearer to the origin than the regression line based on any of the x's.

There exist several criteria to obtain vector a which will maximize the correlation co-efficient between y and I. However, all

such indices will be linear functions of one another and give the same value of the correlation coefficient and also the same intercept on the y axis, Rao [4].

3. Use of P-Auxiliary Variates to Increase the Efficiency of Cluster Sampling

From (1.3) and (1.4) it can be seen that the efficiencies E_1 and E_2 of cluster sampling, depend upon ρ , ρ' , ρ_b and M. For a given set of clusters of size M, ρ' is fixed and also ρ is fixed for given x and y and therefore the values of E_1 and E_2 can be increased by increasing ρ_b . By constructing an index $I_{(M)}$ similar to the one given in section 2 as linear combination of cluster means of p-auxiliary variates, the correlation coefficient, ρ'_b , between cluster means of p and those of the index can be increased considerably. The proposed index is

where
$$\underline{\overline{X}'(M)} = \underline{C'}\overline{\overline{X}}_{(M)}$$
 ...(3.1)
where $\underline{\overline{X}'(M)} = (\overline{x}_{1(M)}, \overline{x}_{2(M)}, \dots, \overline{x}_{p(M)})$
and $\overline{x}_{1(M)}, \overline{x}_{2(M)}, \dots, \overline{x}_{p(M)}$ are means of clusters of size M and $C' = (c_1, c_2, \dots, c_p)$

is the vector of constants to be chosen so that

$$\rho_b' > \rho_b$$

The efficiency of cluster sampling with regression and ratio estimators based on $I_{(M)}$ is given by

$$E_1' = \frac{1 - \rho_I^2}{\left(1 - {\rho'_b}^2\right) \{1 + (M - 1)\rho'\}} \times \frac{n^*}{n} \quad ...(3.2)$$

and

$$E_{2}' = \frac{1 - \rho_{I}}{(1 - \rho_{b}')\{1 + (M - 1)\rho'\}} \times \frac{n^{*}}{n} \qquad ...(3.3)$$

respectively. Here P_I is the correlation coefficient between y and I. It can be shown that the efficiencies E_1 and E_2 will be considerably higher than E_1 and E_2 respectively. E_1 will be greater than E_1

if
$$\frac{\left(1-\rho_{I}^{2}\right)\left(1-\rho_{Ib}^{2}\right)}{\left(1-\rho_{I}^{2}\right)\left(1-\rho_{Ib}^{2}\right)}-1>0 \quad \forall i=1, 2, ...p. \quad ...(3.4)$$

where ρ_i and ρ_{ib} are correlation coefficients between y and x_i and their respective cluster means.

This result can be shown to hold good in the case of two auxiliary variates $(p=2) x_1$ and x_2 . In this case (3.4) reduces to

$$\frac{\left(\begin{array}{ccc} {\rho'}_b^2 - {\rho_1}_b^2 \right) - \left(\begin{array}{ccc} {\rho_I^2} & -{\rho_1}^2 \end{array}\right) + {\rho_I^2} & {\rho_1}_b^2 - {\rho_1}^2 & {\rho'}_b^2}{\left(1 - {\rho_1}^2\right) \left(1 - {\rho'}_b^2\right)} > 0$$

Substituting the values of ρ_b' and ρ_{1b} in some of the terms in the above we get

$$\frac{(\rho_{1b} - \rho_{2b} \rho'_{12})^{2}}{1 - \rho'_{12}^{2}} - \frac{(\rho_{1} - \rho_{1} \rho_{12})^{2}}{1 - \rho_{12}^{2}} + \rho_{I}^{2} \quad \rho_{1b}^{2} - \rho_{1}^{2} \quad \rho_{b}^{2}}{\left(1 - \rho'_{1}^{2}\right)\left(1 - \rho'_{b}^{2}\right)} > 0 \dots (3.5)$$

where ρ_{12} and ρ'_{12} are the correlation coefficients between x_1 and x_2 and their respective cluster means.

For the sake of simplicity let,

$$\rho_1 = \rho_2 = \rho$$

and

$$\rho_{1b} = \rho_{2b} = \rho_b$$

under these assumption (3.5) reduces to

$$\frac{\frac{\rho_b^2 (1-\rho_{12}')}{(1+\rho_{12}')} - \frac{\rho^2 (1-\rho_{12})}{1+\rho_{12}} + 2 \rho_b^2 \rho^2 \left(\frac{1}{1+\rho_{12}}\right) - \frac{1}{1-\rho_{12}'}}{(1-\rho^2)\left(1-\rho_b'^2\right)} > 0$$

After some algebraic manipulation this further simplifies to

$$\rho_b(1+\rho_{12}) (1-\rho'_{12})+\rho(1+\rho'_{12}) (1-\rho_{12})>0$$

which is obviously true. Thus E_{1}' will be greater than E_{1} . Similarly it can be proved that $E_{2}' > E_{2}$.

4. EMPIRICAL ILLUSTRATION

Table 1 presents the correlation coefficients ρ_1 (between number of cultivators, y, and number of male cultivators, x_1), ρ_2 (between number of cultivators and number of female cultivators, x_2), ρ_{12} (between x_1 and x_2) and ρ'_b (between means of y and $I_{(M)}$ for clusters of 2 and 4 villages *i.e.* M=2, 4) in Lodha block of Aligarh district (U.P.)

TABLE 1 Values of various correlation coefficients for clusters of 1,2 and 4 villages.

Cluster Size (M) Correla tion coeffi- cients	I	2	4
ρ,	0.701	0.832	0.882
$ ho_{f 2}$	0.670	0.782	0.812
ρ ₁₂	0.321	0.542	0.611
ρ' _b	0.844	0.921	0.947

Using the values of $\rho_i(i=1, 2)$ and ρ'_b from Table 1, the percentage gain in efficiency of cluster sampling with regression and ratio estimator using $I_{(M)}$ over that using x_1 or x_2 is given in Table 2.

TABLE 2 Percentage gain in efficiency of cluster sampling with regression/ratio estimators using $I_{(M)}$ in place of x_1 or x_2 .

Cluster size (M)	$\frac{E_1'-E_1}{E_1} \times 100$ Using I (M) in place of		$\frac{E_2' - E_2}{E_2} \times 100$ Using $I_{(M)}$ in place of	
	2	12.2	19.4	10.9
4	28.8	13 2	65.4	67 .7

SUMMARY

Following Mishro and Sukhatme [3] use of multi-auxiliary information has been suggested for building up ratio and regression estimates for increasing the efficiency of cluster sampling further.

REFERENCES

- [1] Agarwal, S. K. (1977)
- : Use of Multi-auxiliary Information in Probability Sampling, unpublished Ph.D. thesis— University of Jodhpur, Jodhpur (Rajasthan]
- [2] District Census (1961)
- : Handbook Aligarh (U.P.)
- [3] Mishro, G. K. and Sukhatme, B. V. (1972)
- : Efficiency of cluster sampling in conjunction with ratio and regression methods of estimation, J.I S.A S. Vol. 24(2) pp 81-90.
- (4] Rao, C. R. (1965)
- : Linear Statistical Inference and its Applications, John Wiley & Sons Inc. (Chapter 4 (g) pp 223).
- [5] Zarkovich, S. S. and Krane, J. (1965)
- : Some efficient ways of Cluster Sampling Proc. of 35th session of I. S. I. Belgrade.